32bpp_optimized.cpp

Go to the documentation of this file.
00001 /* $Id$ */
00002 
00003 /*
00004  * This file is part of OpenTTD.
00005  * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
00006  * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
00007  * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
00008  */
00009 
00012 #include "../stdafx.h"
00013 #include "../zoom_func.h"
00014 #include "../core/math_func.hpp"
00015 #include "32bpp_optimized.hpp"
00016 
00018 static FBlitter_32bppOptimized iFBlitter_32bppOptimized;
00019 
00027 template <BlitterMode mode>
00028 inline void Blitter_32bppOptimized::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
00029 {
00030   const SpriteData *src = (const SpriteData *)bp->sprite;
00031 
00032   /* src_px : each line begins with uint32 n = 'number of bytes in this line',
00033    *          then n times is the Colour struct for this line */
00034   const Colour *src_px = (const Colour *)(src->data + src->offset[zoom][0]);
00035   /* src_n  : each line begins with uint32 n = 'number of bytes in this line',
00036    *          then interleaved stream of 'm' and 'n' channels. 'm' is remap,
00037    *          'n' is number of bytes with the same alpha channel class */
00038   const uint8  *src_n  = (const uint8  *)(src->data + src->offset[zoom][1]);
00039 
00040   /* skip upper lines in src_px and src_n */
00041   for (uint i = bp->skip_top; i != 0; i--) {
00042     src_px = (const Colour *)((const byte *)src_px + *(const uint32 *)src_px);
00043     src_n += *(uint32 *)src_n;
00044   }
00045 
00046   /* skip lines in dst */
00047   uint32 *dst = (uint32 *)bp->dst + bp->top * bp->pitch + bp->left;
00048 
00049   /* store so we don't have to access it via bp everytime (compiler assumes pointer aliasing) */
00050   const byte *remap = bp->remap;
00051 
00052   for (int y = 0; y < bp->height; y++) {
00053     /* next dst line begins here */
00054     uint32 *dst_ln = dst + bp->pitch;
00055 
00056     /* next src line begins here */
00057     const Colour *src_px_ln = (const Colour *)((const byte *)src_px + *(const uint32 *)src_px);
00058     src_px++;
00059 
00060     /* next src_n line begins here */
00061     const uint8 *src_n_ln = src_n + *(uint32 *)src_n;
00062     src_n += 4;
00063 
00064     /* we will end this line when we reach this point */
00065     uint32 *dst_end = dst + bp->skip_left;
00066 
00067     /* number of pixels with the same aplha channel class */
00068     uint n;
00069 
00070     while (dst < dst_end) {
00071       n = *src_n++;
00072 
00073       if (src_px->a == 0) {
00074         dst += n;
00075         src_px ++;
00076         src_n++;
00077       } else {
00078         if (dst + n > dst_end) {
00079           uint d = dst_end - dst;
00080           src_px += d;
00081           src_n += d;
00082 
00083           dst = dst_end - bp->skip_left;
00084           dst_end = dst + bp->width;
00085 
00086           n = min<uint>(n - d, (uint)bp->width);
00087           goto draw;
00088         }
00089         dst += n;
00090         src_px += n;
00091         src_n += n;
00092       }
00093     }
00094 
00095     dst -= bp->skip_left;
00096     dst_end -= bp->skip_left;
00097 
00098     dst_end += bp->width;
00099 
00100     while (dst < dst_end) {
00101       n = min<uint>(*src_n++, (uint)(dst_end - dst));
00102 
00103       if (src_px->a == 0) {
00104         dst += n;
00105         src_px++;
00106         src_n++;
00107         continue;
00108       }
00109 
00110       draw:;
00111 
00112       switch (mode) {
00113         case BM_COLOUR_REMAP:
00114           if (src_px->a == 255) {
00115             do {
00116               uint m = *src_n;
00117               /* In case the m-channel is zero, do not remap this pixel in any way */
00118               if (m == 0) {
00119                 *dst = src_px->data;
00120               } else {
00121                 uint r = remap[m];
00122                 if (r != 0) *dst = this->LookupColourInPalette(r);
00123               }
00124               dst++;
00125               src_px++;
00126               src_n++;
00127             } while (--n != 0);
00128           } else {
00129             do {
00130               uint m = *src_n;
00131               if (m == 0) {
00132                 *dst = ComposeColourRGBANoCheck(src_px->r, src_px->g, src_px->b, src_px->a, *dst);
00133               } else {
00134                 uint r = remap[m];
00135                 if (r != 0) *dst = ComposeColourPANoCheck(this->LookupColourInPalette(r), src_px->a, *dst);
00136               }
00137               dst++;
00138               src_px++;
00139               src_n++;
00140             } while (--n != 0);
00141           }
00142           break;
00143 
00144         case BM_TRANSPARENT:
00145           /* TODO -- We make an assumption here that the remap in fact is transparency, not some colour.
00146            *  This is never a problem with the code we produce, but newgrfs can make it fail... or at least:
00147            *  we produce a result the newgrf maker didn't expect ;) */
00148 
00149           /* Make the current colour a bit more black, so it looks like this image is transparent */
00150           src_n += n;
00151           if (src_px->a == 255) {
00152             src_px += n;
00153             do {
00154               *dst = MakeTransparent(*dst, 3, 4);
00155               dst++;
00156             } while (--n != 0);
00157           } else {
00158             do {
00159               *dst = MakeTransparent(*dst, (256 * 4 - src_px->a), 256 * 4);
00160               dst++;
00161               src_px++;
00162             } while (--n != 0);
00163           }
00164           break;
00165 
00166         default:
00167           if (src_px->a == 255) {
00168             /* faster than memcpy(), n is usually low */
00169             src_n += n;
00170             do {
00171               *dst = src_px->data;
00172               dst++;
00173               src_px++;
00174             } while (--n != 0);
00175           } else {
00176             src_n += n;
00177             do {
00178               *dst = ComposeColourRGBANoCheck(src_px->r, src_px->g, src_px->b, src_px->a, *dst);
00179               dst++;
00180               src_px++;
00181             } while (--n != 0);
00182           }
00183           break;
00184       }
00185     }
00186 
00187     dst = dst_ln;
00188     src_px = src_px_ln;
00189     src_n  = src_n_ln;
00190   }
00191 }
00192 
00200 void Blitter_32bppOptimized::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
00201 {
00202   switch (mode) {
00203     default: NOT_REACHED();
00204     case BM_NORMAL:       Draw<BM_NORMAL>      (bp, zoom); return;
00205     case BM_COLOUR_REMAP: Draw<BM_COLOUR_REMAP>(bp, zoom); return;
00206     case BM_TRANSPARENT:  Draw<BM_TRANSPARENT> (bp, zoom); return;
00207   }
00208 }
00209 
00217 static const SpriteLoader::Sprite *ResizeSprite(const SpriteLoader::Sprite *sprite_src, ZoomLevel zoom)
00218 {
00219   SpriteLoader::Sprite *sprite = MallocT<SpriteLoader::Sprite>(1);
00220 
00221   if (zoom == ZOOM_LVL_NORMAL) {
00222     memcpy(sprite, sprite_src, sizeof(*sprite));
00223     uint size = sprite_src->height * sprite_src->width;
00224     sprite->data = MallocT<SpriteLoader::CommonPixel>(size);
00225     memcpy(sprite->data, sprite_src->data, size * sizeof(SpriteLoader::CommonPixel));
00226     return sprite;
00227   }
00228 
00229   sprite->height = UnScaleByZoom(sprite_src->height, zoom);
00230   sprite->width  = UnScaleByZoom(sprite_src->width,  zoom);
00231   sprite->x_offs = UnScaleByZoom(sprite_src->x_offs, zoom);
00232   sprite->y_offs = UnScaleByZoom(sprite_src->y_offs, zoom);
00233 
00234   uint size = sprite->height * sprite->width;
00235   SpriteLoader::CommonPixel *dst = sprite->data = CallocT<SpriteLoader::CommonPixel>(size);
00236 
00237   const SpriteLoader::CommonPixel *src = (SpriteLoader::CommonPixel *)sprite_src->data;
00238   const SpriteLoader::CommonPixel *src_end = src + sprite_src->height * sprite_src->width;
00239 
00240   uint scaled_1 = ScaleByZoom(1, zoom);
00241 
00242   for (uint y = 0; y < sprite->height; y++) {
00243     if (src >= src_end) src = src_end - sprite_src->width;
00244 
00245     const SpriteLoader::CommonPixel *src_ln = src + sprite_src->width * scaled_1;
00246     for (uint x = 0; x < sprite->width; x++) {
00247       if (src >= src_ln) src = src_ln - 1;
00248       *dst = *src;
00249       dst++;
00250       src += scaled_1;
00251     }
00252 
00253     src = src_ln;
00254   }
00255 
00256   return sprite;
00257 }
00258 
00259 Sprite *Blitter_32bppOptimized::Encode(SpriteLoader::Sprite *sprite, AllocatorProc *allocator)
00260 {
00261   /* streams of pixels (a, r, g, b channels)
00262    *
00263    * stored in separated stream so data are always aligned on 4B boundary */
00264   Colour *dst_px_orig[ZOOM_LVL_COUNT];
00265 
00266   /* interleaved stream of 'm' channel and 'n' channel
00267    * 'n' is number if following pixels with the same alpha channel class
00268    * there are 3 classes: 0, 255, others
00269    *
00270    * it has to be stored in one stream so fewer registers are used -
00271    * x86 has problems with register allocation even with this solution */
00272   uint8  *dst_n_orig[ZOOM_LVL_COUNT];
00273 
00274   /* lengths of streams */
00275   uint32 lengths[ZOOM_LVL_COUNT][2];
00276 
00277   for (ZoomLevel z = ZOOM_LVL_BEGIN; z < ZOOM_LVL_END; z++) {
00278     const SpriteLoader::Sprite *src_orig = ResizeSprite(sprite, z);
00279 
00280     uint size = src_orig->height * src_orig->width;
00281 
00282     dst_px_orig[z] = CallocT<Colour>(size + src_orig->height * 2);
00283     dst_n_orig[z]  = CallocT<uint8>(size * 2 + src_orig->height * 4 * 2);
00284 
00285     uint32 *dst_px_ln = (uint32 *)dst_px_orig[z];
00286     uint32 *dst_n_ln  = (uint32 *)dst_n_orig[z];
00287 
00288     const SpriteLoader::CommonPixel *src = (const SpriteLoader::CommonPixel *)src_orig->data;
00289 
00290     for (uint y = src_orig->height; y > 0; y--) {
00291       Colour *dst_px = (Colour *)(dst_px_ln + 1);
00292       uint8 *dst_n = (uint8 *)(dst_n_ln + 1);
00293 
00294       uint8 *dst_len = dst_n++;
00295 
00296       uint last = 3;
00297       int len = 0;
00298 
00299       for (uint x = src_orig->width; x > 0; x--) {
00300         uint8 a = src->a;
00301         uint t = a > 0 && a < 255 ? 1 : a;
00302 
00303         if (last != t || len == 255) {
00304           if (last != 3) {
00305             *dst_len = len;
00306             dst_len = dst_n++;
00307           }
00308           len = 0;
00309         }
00310 
00311         last = t;
00312         len++;
00313 
00314         if (a != 0) {
00315           dst_px->a = a;
00316           *dst_n = src->m;
00317           if (src->m != 0) {
00318             /* Pre-convert the mapping channel to a RGB value */
00319             uint32 colour = this->LookupColourInPalette(src->m);
00320             dst_px->r = GB(colour, 16, 8);
00321             dst_px->g = GB(colour, 8,  8);
00322             dst_px->b = GB(colour, 0,  8);
00323           } else {
00324             dst_px->r = src->r;
00325             dst_px->g = src->g;
00326             dst_px->b = src->b;
00327           }
00328           dst_px++;
00329           dst_n++;
00330         } else if (len == 1) {
00331           dst_px++;
00332           *dst_n = src->m;
00333           dst_n++;
00334         }
00335 
00336         src++;
00337       }
00338 
00339       if (last != 3) {
00340         *dst_len = len;
00341       }
00342 
00343       dst_px = (Colour *)AlignPtr(dst_px, 4);
00344       dst_n  = (uint8 *)AlignPtr(dst_n, 4);
00345 
00346       *dst_px_ln = (uint8 *)dst_px - (uint8 *)dst_px_ln;
00347       *dst_n_ln  = (uint8 *)dst_n  - (uint8 *)dst_n_ln;
00348 
00349       dst_px_ln = (uint32 *)dst_px;
00350       dst_n_ln =  (uint32 *)dst_n;
00351     }
00352 
00353     lengths[z][0] = (byte *)dst_px_ln - (byte *)dst_px_orig[z]; // all are aligned to 4B boundary
00354     lengths[z][1] = (byte *)dst_n_ln  - (byte *)dst_n_orig[z];
00355 
00356     free(src_orig->data);
00357     free((void *)src_orig);
00358   }
00359 
00360   uint len = 0; // total length of data
00361   for (ZoomLevel z = ZOOM_LVL_BEGIN; z < ZOOM_LVL_END; z++) {
00362     len += lengths[z][0] + lengths[z][1];
00363   }
00364 
00365   Sprite *dest_sprite = (Sprite *)allocator(sizeof(*dest_sprite) + sizeof(SpriteData) + len);
00366 
00367   dest_sprite->height = sprite->height;
00368   dest_sprite->width  = sprite->width;
00369   dest_sprite->x_offs = sprite->x_offs;
00370   dest_sprite->y_offs = sprite->y_offs;
00371 
00372   SpriteData *dst = (SpriteData *)dest_sprite->data;
00373 
00374   for (ZoomLevel z = ZOOM_LVL_BEGIN; z < ZOOM_LVL_END; z++) {
00375     dst->offset[z][0] = z == ZOOM_LVL_BEGIN ? 0 : lengths[z - 1][1] + dst->offset[z - 1][1];
00376     dst->offset[z][1] = lengths[z][0] + dst->offset[z][0];
00377 
00378     memcpy(dst->data + dst->offset[z][0], dst_px_orig[z], lengths[z][0]);
00379     memcpy(dst->data + dst->offset[z][1], dst_n_orig[z],  lengths[z][1]);
00380 
00381     free(dst_px_orig[z]);
00382     free(dst_n_orig[z]);
00383   }
00384 
00385   return dest_sprite;
00386 }

Generated on Mon May 9 05:18:51 2011 for OpenTTD by  doxygen 1.6.1