ground_vehicle.cpp

Go to the documentation of this file.
00001 /* $Id$ */
00002 
00003 /*
00004  * This file is part of OpenTTD.
00005  * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
00006  * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
00007  * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
00008  */
00009 
00012 #include "stdafx.h"
00013 #include "train.h"
00014 #include "roadveh.h"
00015 #include "depot_map.h"
00016 
00020 template <class T, VehicleType Type>
00021 void GroundVehicle<T, Type>::PowerChanged()
00022 {
00023   assert(this->First() == this);
00024   const T *v = T::From(this);
00025 
00026   uint32 total_power = 0;
00027   uint32 max_te = 0;
00028   uint32 number_of_parts = 0;
00029   uint16 max_track_speed = v->GetDisplayMaxSpeed();
00030 
00031   for (const T *u = v; u != NULL; u = u->Next()) {
00032     uint32 current_power = u->GetPower() + u->GetPoweredPartPower(u);
00033     total_power += current_power;
00034 
00035     /* Only powered parts add tractive effort. */
00036     if (current_power > 0) max_te += u->GetWeight() * u->GetTractiveEffort();
00037     number_of_parts++;
00038 
00039     /* Get minimum max speed for this track. */
00040     uint16 track_speed = u->GetMaxTrackSpeed();
00041     if (track_speed > 0) max_track_speed = min(max_track_speed, track_speed);
00042   }
00043 
00044   byte air_drag;
00045   byte air_drag_value = v->GetAirDrag();
00046 
00047   /* If air drag is set to zero (default), the resulting air drag coefficient is dependent on max speed. */
00048   if (air_drag_value == 0) {
00049     uint16 max_speed = v->GetDisplayMaxSpeed();
00050     /* Simplification of the method used in TTDPatch. It uses <= 10 to change more steadily from 128 to 196. */
00051     air_drag = (max_speed <= 10) ? 192 : max(2048 / max_speed, 1);
00052   } else {
00053     /* According to the specs, a value of 0x01 in the air drag property means "no air drag". */
00054     air_drag = (air_drag_value == 1) ? 0 : air_drag_value;
00055   }
00056 
00057   this->gcache.cached_air_drag = air_drag + 3 * air_drag * number_of_parts / 20;
00058 
00059   max_te *= 10000; // Tractive effort in (tonnes * 1000 * 10 =) N.
00060   max_te /= 256;   // Tractive effort is a [0-255] coefficient.
00061   if (this->gcache.cached_power != total_power || this->gcache.cached_max_te != max_te) {
00062     /* Stop the vehicle if it has no power. */
00063     if (total_power == 0) this->vehstatus |= VS_STOPPED;
00064 
00065     this->gcache.cached_power = total_power;
00066     this->gcache.cached_max_te = max_te;
00067     SetWindowDirty(WC_VEHICLE_DETAILS, this->index);
00068     SetWindowWidgetDirty(WC_VEHICLE_VIEW, this->index, WID_VV_START_STOP);
00069   }
00070 
00071   this->gcache.cached_max_track_speed = max_track_speed;
00072 }
00073 
00078 template <class T, VehicleType Type>
00079 void GroundVehicle<T, Type>::CargoChanged()
00080 {
00081   assert(this->First() == this);
00082   uint32 weight = 0;
00083 
00084   for (T *u = T::From(this); u != NULL; u = u->Next()) {
00085     uint32 current_weight = u->GetWeight();
00086     weight += current_weight;
00087     /* Slope steepness is in percent, result in N. */
00088     u->gcache.cached_slope_resistance = current_weight * u->GetSlopeSteepness() * 100;
00089   }
00090 
00091   /* Store consist weight in cache. */
00092   this->gcache.cached_weight = max<uint32>(1, weight);
00093   /* Friction in bearings and other mechanical parts is 0.1% of the weight (result in N). */
00094   this->gcache.cached_axle_resistance = 10 * weight;
00095 
00096   /* Now update vehicle power (tractive effort is dependent on weight). */
00097   this->PowerChanged();
00098 }
00099 
00104 template <class T, VehicleType Type>
00105 int GroundVehicle<T, Type>::GetAcceleration() const
00106 {
00107   /* Templated class used for function calls for performance reasons. */
00108   const T *v = T::From(this);
00109   int32 speed = v->GetCurrentSpeed(); // [km/h-ish]
00110 
00111   /* Weight is stored in tonnes. */
00112   int32 mass = this->gcache.cached_weight;
00113 
00114   /* Power is stored in HP, we need it in watts. */
00115   int32 power = this->gcache.cached_power * 746;
00116 
00117   int32 resistance = 0;
00118 
00119   bool maglev = v->GetAccelerationType() == 2;
00120 
00121   const int area = v->GetAirDragArea();
00122   if (!maglev) {
00123     /* Static resistance plus rolling friction. */
00124     resistance = this->gcache.cached_axle_resistance;
00125     resistance += mass * v->GetRollingFriction();
00126   }
00127   /* Air drag; the air drag coefficient is in an arbitrary NewGRF-unit,
00128    * so we need some magic conversion factor. */
00129   resistance += (area * this->gcache.cached_air_drag * speed * speed) / 1000;
00130 
00131   resistance += this->GetSlopeResistance();
00132 
00133   /* This value allows to know if the vehicle is accelerating or braking. */
00134   AccelStatus mode = v->GetAccelerationStatus();
00135 
00136   const int max_te = this->gcache.cached_max_te; // [N]
00137   int force;
00138   if (speed > 0) {
00139     if (!maglev) {
00140       /* Conversion factor from km/h to m/s is 5/18 to get [N] in the end. */
00141       force = power * 18 / (speed * 5);
00142       if (mode == AS_ACCEL && force > max_te) force = max_te;
00143     } else {
00144       force = power / 25;
00145     }
00146   } else {
00147     /* "Kickoff" acceleration. */
00148     force = (mode == AS_ACCEL && !maglev) ? min(max_te, power) : power;
00149     force = max(force, (mass * 8) + resistance);
00150   }
00151 
00152   if (mode == AS_ACCEL) {
00153     /* Easy way out when there is no acceleration. */
00154     if (force == resistance) return 0;
00155 
00156     /* When we accelerate, make sure we always keep doing that, even when
00157      * the excess force is more than the mass. Otherwise a vehicle going
00158      * down hill will never slow down enough, and a vehicle that came up
00159      * a hill will never speed up enough to (eventually) get back to the
00160      * same (maximum) speed. */
00161     int accel = (force - resistance) / (mass * 4);
00162     return force < resistance ? min(-1, accel) : max(1, accel);
00163   } else {
00164     return min(-force - resistance, -10000) / mass;
00165   }
00166 }
00167 
00172 template <class T, VehicleType Type>
00173 bool GroundVehicle<T, Type>::IsChainInDepot() const
00174 {
00175   const T *v = this->First();
00176   /* Is the front engine stationary in the depot? */
00177   assert_compile((int)TRANSPORT_RAIL == (int)VEH_TRAIN);
00178   assert_compile((int)TRANSPORT_ROAD == (int)VEH_ROAD);
00179   if (!IsDepotTypeTile(v->tile, (TransportType)Type) || v->cur_speed != 0) return false;
00180 
00181   /* Check whether the rest is also already trying to enter the depot. */
00182   for (; v != NULL; v = v->Next()) {
00183     if (!v->T::IsInDepot() || v->tile != this->tile) return false;
00184   }
00185 
00186   return true;
00187 }
00188 
00189 /* Instantiation for Train */
00190 template struct GroundVehicle<Train, VEH_TRAIN>;
00191 /* Instantiation for RoadVehicle */
00192 template struct GroundVehicle<RoadVehicle, VEH_ROAD>;